Smart Meters Implementation with Informatica

by Bhelcy Nadar
Sr. Developer

Smart Meters are the new essential part of Utility. It helps the customer understand their energy usage at different times of the day which benefits them to manage the usage more proactively.

By utilizing Informatica tools we can define the business glossaries related to smart meters in Informatica Axon, show its association with the technical column from Informatica Enterprise Data Catalog and see the lineage that shows data movement around smart meters across the different source and target platforms like file systems and databases. Figure 1, shows the taxonomy created in Informatica Axon.

Figure 1: Smart meter taxonomy in Informatica Axon

Figure 2, shows the association of Axon business glossary hourly consumption as business title to the technical field in Informatica Enterprise Data Catalog. This can be done manually or by enabling the business glossary association. It also shows the description populated from Axon and the value frequency of the data.

Figure 2: Association to technical fields to Axon Business Glossary

Figure 3, shows lineage and impact between AWS S3 file system and Snowflake in Informatica Enterprise Data Catalog.

Figure 3: Lineage in Informatica Enterprise Data Catalog

One of the most important functions of smart meters is the recording of hourly consumption done by the consumer. This data is essential as the supply of electricity can be monitored. By using Informatica Big Data Quality we can profile the dataset and execute technical data quality rules to monitor and identify exceptions within the data sets. The technical data quality rule defined in Informatica Data Quality has an expression defined to validate the data. This rule is related to the local data quality rule created in Informatica Axon where the results will be updated based on the schedule. If there happens to be an outage in the supply the data quality rule will recognize the exception. This is further updated in the local data quality rule of Informatica Axon. Based on the change in result a workflow will be triggered to notify the steward about the exception occurred. Figure 4, shows the exceptions generated in Big Data Quality.

Figure 4: Hourly consumption’s exceptions in Big Data Quality

Figure 5, shows the results updated in Axon local data quality rule.

Figure 5: Shows results in Axon

The smart meter data will have information of the consumer like the meter Id the subscriber’s usage patterns which is highly sensitive. By using Informatica Data Privacy Management we can scan the data and flag the information as sensitive. This helps in understanding the sensitive data and further masking it by using extensions created for Informatica Test Data Management. Figure 6 shows the masking technique and the data before and after masking.

Figure 6: Masking technique and the date before and after masking

Share on facebook
Share on twitter
Share on linkedin
We use cookies to ensure we give you the best experience on our website. If you continue to use this site, we will assume you consent to our privacy policy.